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Abstract

Thegoalof this investigationis to numericallysimulatetheeffectsof oscillatory

actuatorsplacedon theleadingedgeof anairfoil, andto quantifytheeffectsof oscillatory

blowing onanairfoil stall behavior. It hasbeendemonstratedexperimentallythatperiodic

blowing candelayflow separationat highangleof attack. Thecomputationsareto beperformed

for aTAU 0015airfoil atahigh Reynoldsnumberof - 1 x 106 with turbulent flow conditions.

The two-equation Wilcox k - (o turbulence model has been shown to provide reliable

descriptions of transition and turbulence at high Reynolds numbers. The results are to be

compared to Seifert's experimental data.

Introduction

Studies indicate that when periodic flow excitation is applied to airfoils, it can effectively

delay flow separation. There have been several approaches introduced to reduce flow separation,

namely, deformation of the leading edge of an airfoil, steady blowing and several different

methods of oscillatory blowing applied to the airfoil. This research is focused on steady or

oscillatory blowing on the leading edge of an airfoil. Studies have indicated that

oscillatory/periodic blowing is significantly more efficient than steady suction or steady blowing

at controlling separation, t_'2'31 Not only that, the implementation of a controlled periodic

excitation is more feasible than steady blowing.

Experiments on a NACA 0015 airfoil with low Reynolds number have shown that the

incompressible maximum lift coefficient, Cl,m,x, can be increased by more than 15%. In addition,

the post-stall lift can be increased by as much as 50% and post-stall drag can be reduced by more

than 50%. [4] The airfoil that is currently being investigated is the TAU 0015, which was tested in



a low-speedwind tunnelat Tel-Aviv University (TAU). Finally, experimentsperformedovera

wide rangeof ReynoldsandMachnumbersshowedthatperiodicexcitationcaneffectivelydelay

turbulentboundarylayerseparationandreattachflows.E_'2'31Furtherresearchin activecontrol

hasshownthatReynoldsnumberscorrespondingto ajetliner at takeoffconditionwere

successfullyapplied.E21Thenumericalmodelbeingusedis thecompressibleNavier-Stokes

OSC2Dcodeimplementingthetwo-equationWilcox k-to turbulence model. Predictions will be

compared with the experimental results produced by Seifert TMas well as with the computational

results from Joslin et al. [61and Donovan et al. _71.

Airfoil Geometry

A common practice in experiments is to use a blunt or finite thickness trailing edge.

However, for computational and grid generation purposes we implement a sharp trailing edge.

The NACA 00xx airfoils with a finite thickness trailing edge are described by

c-[ 0.20 __ O[ c ) + at + a2
4+as c +a4 7 (1)

where t/_c is the thickness-chord ratio (e.g., t/_c:O.15 for a NACA 0015 airfoil). The constant

coefficients for the equation (1) are: ao = 0.2969, al = -0.1260, a2 = -0.3516, as = 0.2843 and

a4 = -0.1015. [81 The coefficient of the x2 component is changed to a2 = -0.3537, to convert the

NACA 00xx airfoil from a blunt trailing edge to a sharp trailing edge.

The coordinate data for the TAU 0015 airfoil provided by Seifert includes a notch at the

leading edge, a notch at x/_c ---0. 76 on the upper surface, and a finite thickness trailing edge. The

notch on the upper surface will be ignored in this study. By using a similar approach to that



describedabove,theTAU 0015dataprovidedby Seifertwasconvertedto a sharptrailingedge

by thetransformations

Y = Yd,,_ -0.001575('71 )2 (2)

where .71 =(x+0"003281 is a function ofthe specified length for the upper surface of the

t,)l. 00328

airfoil, and

Y = Yd,,, + 0.001570( .72 )2 (3)

where .72 = (x + 0.00656 _ is a function of the specified length for the lower surface of the
, 1.00656 )

airfoil. The difference between equations (2) and (3) is due to the definition of points on the

trailing edge at the upper and lower surfaces.

Now, by modifying the NACA 0015 equation we can closely match the values produced

the equations above with y = Y//fc° and x = _c ° , and let co = 1.0 for comparison purposes.from

First, the upper surface of the airfoil is described by

y, =O.75(ao xg + alx + a2x 2 + a3x3 + a4x4 ), for 0.3 <_x<_l.O (4.a)

and

Yt2 = O. 75(aoXl _ + alx I + a2xl 2 + a3xl J + a4xl 4 ), for - 0.00328 < x < 0.3

0.3 )where, xt = (x + 0.00328 0.30--328 " The lower surface is described by

and

ybt =-O.75(aoXk_ + alx + a2 x2 + a3x 3 + a4x4 ), for 0.3<x<1.0

Yo2 = -0.75(aoX2 _ + alXe + a2x22 + a3xJ + a4x24 )' for - 0.00656 < x < 0.3

(4.b)

(4.c)

(4.d)
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_ooo656t_11Thecoe_c_entsaiaredeteoine_by_eastsquarefitsofwhere, x 2
U..JUODO

equations (4) to the respective portions of the sharp trailing edge TAU 0015.

The relative differences in y between the TAU 0015 sharp trailing edge airfoil described

by equations (1)-(3) and the curve-fitted TAU 0015 airfoil described by equations (4) are less

than _+0.5% with the exception of a couple points located near the discontinuity located at the

notch on the leading edge, where the absolute difference in y were less than 0.0001.

Now, we normalize the current curve-fitted TAU 0015 airfoil for computational purposes.

The x-transformations are needed to make the leading edge (of the lower surface) coincide with

the origin. We do this normalization and transformation by

, x + 0.00656 (5.a)X ----
1.00656

for both the lower and upper surfaces, then

I y'y. = 1.00656 (5.b)
Y0

1.00656

again, for the lower and upper surfaces which was defined in equations (4). The purpose of using

a curve-fitted equation is to define the surface boundary of the airfoil continuously with the

exception of the notch at the leading edge.



Equations of Motion

For compressible turbulent fluid flows, the equations of motion and k - o9 turbulence

model equations written in terms of Favre mass-averaged quantities are

Mass conservation:

--_-+ (puj)=O (6)

Momentum balance:

_(Pu')+oxj - .x, _xj
(7)

Mean energy conservation:

-_(pE)+_xj(tgujH)= u,_ U +_+cr I.tr _x---f-qj (8)

Turbulent mixing energy:

_ Ou'-_6*pwk+_xj[ +¢rlar)_xj] (9)(pk)+ (p._k)=_-,j-7 o (. . o,

Specific dissipation rate:

0 Io  ou,  ool ,lO,_-(oo,)+_.,o,)=T '__x-T-_°_ +_ +"_'__, j

where t is time, x, is the position vector, u, is the velocity vector, p is density, p is pressure,/2 is

molecular viscosity, _]j is the sum of molecular and Reynolds stress tensors, and q_ is the sum of

the molecular and turbulent heat flux vectors. In Equation (8), the quantities E = e + k + u_uj/2

and H = h + k + u,u i/2 are total energy and enthalpy, respectively, where h = e + p/p, and e and

h denote internal energy and enthalpy, respectively. Additionally, _j is the Reynolds stress tensor.



Theturbulentmixing energyk and the specific dissipation rate (o are needed to define the

eddy viscosity E91

/xr =a* ok (11)
co

The total viscous stress tensor is

_ij =21a[So ('l_uk ]+ (12)

where the mean strain-rate tensor S,_is

l(Oui _uj 1
Sis (13)

:Tt_ +Ox,j

We invoke the Boussinesq approximation that the Reynolds stress tensor is proportional to the

mean strain-rate tensor

[ ( l'_Ouk q-2pk6o (14)-/-/--S_j /

Finally, the heat flux vector qs is approximated as

_ #x + (15)_-(_ _ ] _"qJ "_-_--rr) _-xxs

where PrL and Pr,. are the laminar and turbulent Prandtl numbers, respectively. The closure

coefficients E91are /7= 3/40, _" = 9/100, a= 5/9, o_*= 1, _ = 1/2 and a* = 1/2.



Governing Equations

The method used to formulate the flow governing equations past an airfoil makes use of

an inertial reference frame in which any movement of the airfoil is simulated by multiple grid

generation as the airfoil moves. The way to get around the multiple grid generation if the wing

movement is predefined and the body is rigid. In this case, a single grid is generated for the

problem and new grids are obtained by solving a set of equations based on rigid body rotation as

the airfoil goes through its pitching motion. However, if the body is flexible or deforming, this

method will not work. Hence, the multiple grid generation used to track the wing motion is more

general and can handle both flexible and deforming bodies. The latter approach, combined with

a moving grid, has been adopted here.

Arbitrary shaped bodies present a difficulty for finite difference formulation of the

problem in Cartesian coordinates. So, we need to map the physical space into a uniform

computational space using a general curvilinear coordinate transformation. For the problem

under study, the grid is moving in the physical space, so time must be included as one of the

variables in the general coordinate transformation.

Since wish to simulate deep dynamic stall, the full Navier-Stokes equations in

nondimensional and conservative-law form are written as

Q,+E,,+Fy=Re-I(Evx +F_y) (16)

where

Q= pu ,E= pu2 + P F = puv

flUV ' pV 2 + p

u(e+p) v(e+p)



with

f0/ r"t'xx , Fv=

tEv,j F,,

r_ =(&+2#)u x +2v,,

Tyx = T.ry,

"try = (_ + 2/.t)v, +Xux,

E_,=u_ +v_ +(y-_/pr(a_)_'

where Re is the Reynolds number, Pr is a Prandtl number and y is the ratio of specific heats (1.4

for air). The speed of sound a is given for ideal fluids by a z = yp/p. The dynamic viscosity/_

is calculated from Sutherland's formula and Stokes hypothesis 2 + (2/3)# = 0 is assumed.

Pressure is related to the conservative flow variables, Q, by the equation of state

I 1 )]p:(g-l) e--_p(uZ+v 2 . (17)

Equation (16) is based on an Eulerian description of motion. In this approach, a fixed

control volume is used and the changes to the fluid are recorded as the fluid passes through the

control volume. The choice of nondimensional parameters is arbitrary. The variables

p (density), u and v (Cartesian velocities), e (total energy), t (time), and _, are scaled by

9



p u v

p® a_ a

e i=ta_ ft= kt
a 2 " , ,p_ l I_

Re- p la.

where oo refers to free stream quantities and 1 represents a reference length such as the chord of

an airfoil. Note that the Reynolds number uses freestream speed of sound a rather than the

usual u, therefore it must be scaled by M= = u=/a=. For the remainder of this development the

- will be dropped for simplicity.

Curvilinear Coordinate Transformation

The Navier-Stokes equations can be transformed from Cartesian coordinates to general

curvilinear coordinates where

T=t,

_=_(x,y,t), (18)

o=rl(x,y,t).

The coordinate transformation, or computational space, introduced here are chosen so that the

grid spacing in the curvilinear space is uniform and of unit length. This produces a

computational space _ and 7"/ which is a rectangular domain of uniform unit cells. Therefore,

the standard unweighted differencing schemes can be used in the numerical formulation. There

will be a one to one correspondence between a point in computational space and a point in

physical space except for regions where there are cuts due to topology or singularities. In those

cases, it may be necessary to map one physical point to many computational points that normally

occurs at computational boundaries.

10



The mapping relations are constructed through chain rule expansions, which are used to

represent the Cartesian derivatives 0 x and O_, of Eq. (16) in terms of the curvilinear derivatives

where in matrix form

I
31 _y rl, 00

(19)

In most cases the transformation from physical space to computational space is not

known analytically, rather it is generated numerically. This is accomplished by reversing the role

of the independent variables in the chain rule formulas, Eq. (19), to get

3_ =3, + G3_ + y_Oy,

3_ = x_O x + y_a y. (20)

3, = xn3 x + y, Oy

and in matrix form

3¢ x¢ y¢ 3.

3, x. y. Oy

(21)

Solving Eq. (21) to expand curvilinear derivatives Or , 3_ and 3 n in the terms of Cartesian

derivatives can be written in matrix form

L1xy3_ = 0 x_ y_ 3_

3 I, 0 x. y, 3 n

(22)

By evaluating equations (19) and (22) we get

_, =-G_-Y_y

11



11,= -x_rL - y_rly

= Jy,

rlx = -Jy¢

:--Jx.

O, =Jx+

where the metric Jacobian, J. is defined by

J-_ = x+y. - x, y+

and x_, y, are grid velocity components.

chain rule becomes

Q_ +_,O_ +rl, Oo +_xE¢ +rlxF,7 +_yE¢ +l"lyF "

=Re-' [¢x (E_) , +r/_ (E_)+_y (F_), +r/y (F_).]

(23)

(24)

Equation (16) after coordinate transformation using

(25)

lnvariants of Transformation

At this point of the development of the governing equations one can stop and use Eq. (25)

to solve the flow field. It should be noted that Eq. (25) is not in a full divergence form, since

metrics appear as coefficients in the above differential equations. Therefore, the flow properties

are not strongly conserved. There are researchers who advocate the use of so-called "chain rule

form" in problems such as shock capturing. Here, we shall restrict ourselves to the strong

conservation law form, which will be derived below. Let us produce the strong conservation law

form using Eq. (25). First we multiply this equation by j-t and use the chain rule on all the

terms, such as

12



and collect all the terms into two parts.

(Part 1)

(Part 2)

(28)

If the latter part, Eq. (28), is eliminated then the strong conservation law form of the

equations results in Part 1 equaling zero. For example, take the following term in Eq. (28)

kYJ.

and substitute for _x and r/x to get

(Y,¢-Y¢,_)+(Y¢,7-Y,¢) (29)

Now analytically differentiation is commutative and each of the above terms in then sums to

zero, thus eliminating Part 2 or Eq. (28). Then equation Eq. (27) represents the strong

conservation law form of Eq. (25). Further simplification of Eq. (27) using U and V,

contravariant velocities, results in

t3



(30)

where

P

pu

pv

e

_, = j__ puU + _<p

pvU +_yp '

(e+ p)U-_,p

pV

f. = j__ puV + rlxp

pvV + rlyp

(e+ p)V-rl, p

+ _yr_ = j-I

t_.<Ev4+_,Fv, J

0}_'_X'lffXX + r_y'lffxy

_ x T yx .-1- ]T y_'),y

rl,,Ev4 + rlyF,,4

with the contravariant velocities defined as

u=_, +_xu+_rv,

V =rl t +rLu+rlyv

and the stress terms are

_=:_.[_(¢x,,,+,,x.o)-(_.v,+,,.vo)],

_,,[-(_,,,+.+,)+_(_.v_+..v.)],"t"yy =7

Equation 30 represents the transformed governing flow equations in their final form. The

implementation of the numerical method and its solution procedure are presented below.

14



Boundary Conditions

Probably the most important aspect in successful application of any numerical technique

is the proper treatment of boundary conditions, including impermeable boundaries such as solid

wall and permeable boundaries such as inflow and outflow boundaries, which allow mass across

their surfaces.

A slip boundary condition is assigned on each tunnel wall, since the boundary layers on

these walls cannot be resolved due to the limited number of grid points. In computational space,

it is relatively easy to compute the velocity on the surface by means of extrapolating the

contravariant velocity components. This procedure not only extrapolates the velocity

components but also extrapolates the associated local contravariant base vectors which results in

severe mesh-dependency of the solution. To correct the problem, it is not necessary to

extrapolate the contravariant velocity but rather the tangential velocity components (physical

space). This is done by linear first-order extrapolation, which sets the normal gradient of the

velocity and other flow parameters equal to zero. For example, on an r/-constant plane the

velocity component u is computed by setting

8U=Vu.fi =0 (31)
271

where fi is a unit normal vector defined as

_x t + _yJ

Combining Eq. (32) into Eq. (31) we get

=o

(32)

(33)
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Equation (33) is solved for u implicitly in the _ -direction. Similarly, other variables can

be extrapolated. On the surface of the wing, the no-slip boundary condition is specified. From

Eq. (30) it is apparent that we have four dependent variables at every grid point. In order to

update these variables at the surface, four equations are required. To obtain the correct velocity

of the surface (wing), the contravariant velocities

U=_x(u-xr)+_Y(v-Y_) (34)

are set to zero at the body ( r/ -constant plane). To extract the Cartesian velocity components u

and v from Eq. (34), it is necessary to do a backward transformation from computational space

to physical space, using

[:]:,,roy 1L-rt,, JLV-rl,
(35)

A relation for pressure along the body surface is obtained by combining the two

transformed momentum equations

P..,(rlxz +r12)_ = (_:xrlx +_yrly)p,_ +(rl; + rl_) p. (36)

= +v,9 r4,]

The above relation for pressure boundary condition was found to produce virtually the same

results as the simpler Op/On = 0 condition in this study. However, relation (36) is more stable.

Equations (34) and (36) provide a total of three equations. The fourth equation is obtained

through specifying either constant wall temperature or an adiabatic wall. For the latter case

which is used here,

bT
_=0
c)n

16



mustbesatisfiedatthewall. Assumingaperfectgaslaw,wehavethefollowing relation

betweenpressure,densityandtemperature

p = pRT.

Differentiating the above relation with respect to n and using the adiabatic condition and the

assumption that Op/On is zero between the wall and the first line of discretization adjacent to it,

we have

= 0.
_n

This equation can be written in computational space as

(_fflx +_:,rly)p_ +(r]_ +O_)p. =0 (37)

To obtain pressure and density, Equations (36) and (37) are implicitly solved in the _ -direction.

In the case of constant surface temperature, density at the wall is computed using the equation of

state as

P5

Ps-
RTw,,n

where subscript s denotes properties at the surface. Now, with the addition of Eq. (37), there are

five equations. Therefore, all conservative variables can be computed at the wall.

For the inflow boundary, conservative variables are set to free-stream conditions. First-order

extrapolation is used to update variables on the outflow boundary.

There is a fictitious boundary condition or branch cut introduced by the coordinate

transformation. The branch cut, which in this case is a plane, as shown in Figure 1, starts from

trailing edge of the wing and extends up to the downstream boundary. Every point on this plane

is represented by two points in the computational space. To correctly treat this boundary, it is

17



necessary to apply a periodic condition at the branch cut. This would result in a periodic block

tridiagonal matrix which needs to be inverted at each time step. Periodic block tridiagonal

inversion is much more costly than standard block tridiagonal inversion. Also, accuracy would

require grid smoothness across the branch cut, which is difficult to obtain. However, due to the

nature of the grid there is sufficient point clustering near the plane making it possible to

extrapolate properties from interior nodes to two corresponding points in the computational

space. Since every two points represents one point in a physical space, values there must be the

same. Thus, an averaged value between the two corresponding points is computed and assigned

to both points.

The boundary conditions described in this section have not been incorporated into the

implicit formulation, but are lagged behind one time step. The resulting code is flexible and can

be adapted to different problems with a moderate amount of work. However, it is difficult to

judge what happens to the practical accuracy of the method at the boundary due to this type of

implementation. Visbal & Shang [_°] have evaluated implicit Navier-Stokes solvers in two-

dimensions. They showed that for unsteady flow past a cylinder both implicit and explicit

implementations of boundary conditions over the range of AT (0.005-0.01) produced virtually

identical results.

For inviscid calculations, the slip condition is imposed on the surface of the wing. This is

done in the computational space with the use of contravariant velocity components. Pressure is

implicitly evaluated on the body using the unsteady form of the inviscid momentum equation.

+, )-pv + )=

18



Furthermore, the pressure on the no-slip portion of the slot at the leading edge is

Free stream stagnation enthaply is held constant along the body. Using the equation of

enthalpy. For the far-field, the non-reflecting characteristic boundary condition is used. This

boundary condition requires a mapping between the normal and tangential component of

velocities and the Cartesian component of velocities. Dr. Steinberg used the Symbolic

Manipulation code Macsyma to construct this mapping t_l]

For viscous calculations, the no-slip condition is applied on the surface of the wing by

setting the contravariant velocity components to zero. Pressure is evaluated in a same manner as

in the inviscid case, using the inviscid momentum equation. For the wall temperature, either an

adiabatic condition or constant wall temperature are used. Density is computed using a zero

gradient condition normal to the surface for an evaluated using zeroth-order extrapolation and for

the far-field a non-reflecting characteristic boundary condition is used. The wake is evaluated by

using an overlapping scheme for both the inviscid and viscous cases.

Grid Topology

A two dimensional C-grid will be used in this investigation of the TAU 0015 airfoil due

to the high Reynolds number. The C-grid by its nature is not suitable for periodic boundary

conditions in the _-direction and to apply a true periodicity condition across the branch cut in the

C-grid, the r/-sweep of the approximate factorization algorithm must be modified. The

numerical finite difference code OSC2D implements the block pentadiagonal inversion and the

cost is approximately less than two times the standard approach. The solution to the periodicity

19



problemdevelopedby Visbal andShang[121is to overlapthebranchcut regionin the

computationaldomain. This approachwasverified in solvinga 2-DPoissonequationin fully

curvilinearcoordinatesusingbothO andC typegrids. Theresultshaveshownthattheconcept

is soundandcanbeappliedto airfoil computationsusingtheC-grid. Based,on the

experimentation,it wasdeterminedthatafive point overlapin thewakeis sufficientto producea

smoothsolutionacrossthecut.tl q FortheTAU 0015airfoil, thegrid topologyis shownin

Figure 1. TheoverlappingprocessinFigure 1is shownby lettingpoint B be thesamepoint as

B', point A is A' andsoon. Thepolygonregionof B-C-D-E-F-G-Bis the iblank regionof the

grid. Theterm iblank indicatesthata specifiedareaof thegrid is voidedandnocalculationsare

performedin thatregion.

Approach and Discussion

The experiments conducted by Seifert ESIused actuators at several locations operated at

various frequencies with Mach number 0.15 and Reynolds number 1.2 million. However, this

report is focused on the TAU 0015 with the actuator located at the leading edge with different

frequencies and blowing coefficients.

The different actuator boundary conditions that are being considered are introduced by

the following oscillatory forcing functions

I 1f(¢)= sin(z_¢), (15)

Lsin2( ¢)

where _ is the tangential direction to the surface. The jet suction/blowing is introduced through

the velocity at the surface,

2o



= = U_ f (_)_je,, (16)0,,) c sin r + t

where r/denotes the direction normal to the surface and _je, determines the angle the jet makes

with the surface. The spatial variation of the jet is specified by f(_) and determines an effective

jet width,

H= f [f (¢)]2d¢ , (17)

where the integral is evaluated across the jet (0 < _ < a). The non-dimensional frequency is

F + = fc/U_, which relates the period of the jet cycle to the convection time of the flow over the

airfoil. The steady momentum blowing coefficient, cu = 2(H/cXuj_,/U. _, and the oscillatory

momentum blowing coefficient, (cs,)- 2(H/c_(u_e, )/U. )2, determine the amplitude of the jet,

where Uje, is the mean jet velocity and (u_,,) is the RMS velocity of the jet oscillations. The

flow profile that behaves better and produces a nearly identical flow E7] is sin 2 (lr_). The rest of

the boundary on the airfoil surface is prescribed as a no-slip boundary.

In a previous study, predictions with an unstructured coarse grid showedsome

disagreement with measurements in the highly separated region in stall. [61 Furthermore,

computations performed by Donovan et al. [61and Joslin et al. [71had trouble in predicting AC_

versus A (c_,) where the experimental relation is monotonically increasing while the the

numerical predictions are not. The approach herein is to use a fine, structured C-grid with the

OSC2D finite difference code. The discontinuity of the blowing notch at the leading edge has

caused some problems that will be overcome using the commercial package Gridgen to generate

the geometric topology of the airfoil. The grid generated by Gridgen near the notch in the
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leadingedgeis shownin Figure3. TheOSC2Dcodeappliesthetwo-equationWilcox k-o9

turbulence model, with the assumption of a turbulent boundary layer starting from the leading

edge. Furthermore, the two-equation k -co model has been shown to provide reasonably

accurate description of turbulent and transitional flows in adverse pressure gradients. [9'131

Computational results including the lift and pressure coefficients versus the normalized chord

position and the angle of attack will be compared with Seifert's experiment, as well as with the

predictions of Donovan et al.[6] and Joslin et al.[7]

For all computations in this study, the equations of motion have been integrated through

the viscous sublayer. The Wilcox k-09 model requires no special viscous damping functions to

make possible integration through the sublayer. Viscous corrections by Wilcox [9] are needed

only to improve transition predictions and to simulate subtle features of sublayer structure. The

mean-flow properties are set according to no-slip and adiabatic-wall conditions. The no-slip

condition also dictates that k vanishes at solid boundaries. Furthermore, we have implemented

the slightly-rough surface boundary condition for 09. Finally, the blowing portion of the slot is

treated differently, where k and o9 are evaluated using zeroth-order extrapolation.

Results are presented for oscillatory blowing at 4 ° angle of attack. Other angles of attack

are being computed and will be published along with a comparison of the increase in lift

coefficient provided by the oscillatory blowing.

Figures 2a-e show the oscillatory blowing on the leading edge at the different times in

one cycle beginning with zero blowing velocity, progressing to maximum blowing at one-quarter

cycle, back to zero blowing velocity at one-half cycle, then to maximum blowing at three-quarter

cycle, and finally back to zero blowing velocity to complete the cycle. This cycle begins after

one full cycle has been completed and the results have reached periodic conditions. Fig. 2a

22



showsseparationoff the leading edge of the slot with a large recirculating zone. Fig. 2b shows

strong vortex development due to shear between the flow over the leading edge and the blowing

from the slot. A larger view shows these vortices being convected downstream where they have

significant influence on separation on the upper surface of the airfoil at higher angles of attack.

Fig. 2d shows strong interaction between the flow over the leading edge and the region above the

slot where fluid is being removed by suction.
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Figure 3. The grid structure at the leading edge of the airfoil.
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